AI

Gemini’s data-analyzing abilities aren’t as good as Google claims

Comment

In this photo illustration a Gemini logo and a welcome message on Gemini website are displayed on two screens.
Image Credits: Lorenzo Di Cola/NurPhoto / Getty Images

One of the selling points of Google’s flagship generative AI models, Gemini 1.5 Pro and 1.5 Flash, is the amount of data they can supposedly process and analyze. In press briefings and demos, Google has repeatedly claimed that the models can accomplish previously impossible tasks thanks to their “long context,” like summarizing multiple hundred-page documents or searching across scenes in film footage.

But new research suggests that the models aren’t, in fact, very good at those things.

Two separate studies investigated how well Google’s Gemini models and others make sense out of an enormous amount of data — think “War and Peace”-length works. Both find that Gemini 1.5 Pro and 1.5 Flash struggle to answer questions about large datasets correctly; in one series of document-based tests, the models gave the right answer only 40%-50% of the time.

“While models like Gemini 1.5 Pro can technically process long contexts, we have seen many cases indicating that the models don’t actually ‘understand’ the content,” Marzena Karpinska, a postdoc at UMass Amherst and a co-author on one of the studies, told TechCrunch.

Gemini’s context window is lacking

A model’s context, or context window, refers to input data (e.g., text) that the model considers before generating output (e.g., additional text). A simple question — “Who won the 2020 U.S. presidential election?” — can serve as context, as can a movie script, show or audio clip. And as context windows grow, so does the size of the documents being fit into them.

The newest versions of Gemini can take in upward of 2 million tokens as context. (“Tokens” are subdivided bits of raw data, like the syllables “fan,” “tas” and “tic” in the word “fantastic.”) That’s equivalent to roughly 1.4 million words, two hours of video or 22 hours of audio — the largest context of any commercially available model.

In a briefing earlier this year, Google showed several pre-recorded demos meant to illustrate the potential of Gemini’s long-context capabilities. One had Gemini 1.5 Pro search the transcript of the Apollo 11 moon landing telecast — around 402 pages — for quotes containing jokes, and then find a scene in the telecast that looked similar to a pencil sketch.

VP of research at Google DeepMind Oriol Vinyals, who led the briefing, described the model as “magical.”

“[1.5 Pro] performs these sorts of reasoning tasks across every single page, every single word,” he said.

That might have been an exaggeration.

In one of the aforementioned studies benchmarking these capabilities, Karpinska, along with researchers from the Allen Institute for AI and Princeton, asked the models to evaluate true/false statements about fiction books written in English. The researchers chose recent works so that the models couldn’t “cheat” by relying on foreknowledge, and they peppered the statements with references to specific details and plot points that’d be impossible to comprehend without reading the books in their entirety.

Given a statement like “By using her skills as an Apoth, Nusis is able to reverse engineer the type of portal opened by the reagents key found in Rona’s wooden chest,” Gemini 1.5 Pro and 1.5 Flash — having ingested the relevant book — had to say whether the statement was true or false and explain their reasoning.

Image Credits: UMass Amherst

Tested on one book around 260,000 words (~520 pages) in length, the researchers found that 1.5 Pro answered the true/false statements correctly 46.7% of the time while Flash answered correctly only 20% of the time. Averaging all the benchmark results, neither model managed to achieve a bit higher than random chance in terms of question-answering accuracy.

“We’ve noticed that the models have more difficulty verifying claims that require considering larger portions of the book, or even the entire book, compared to claims that can be solved by retrieving sentence-level evidence,” Karpinska said. “Qualitatively, we also observed that the models struggle with verifying claims about implicit information that is clear to a human reader but not explicitly stated in the text.”

The second of the two studies, co-authored by researchers at UC Santa Barbara, tested the ability of Gemini 1.5 Flash (but not 1.5 Pro) to “reason over” videos — that is, search through and answer questions about the content in them.

The co-authors created a dataset of images (e.g., a photo of a birthday cake) paired with questions for the model to answer about the objects depicted in the images (e.g., “What cartoon character is on this cake?”). To evaluate the models, they picked one of the images at random and inserted “distractor” images before and after it to create slideshow-like footage.

Flash didn’t perform all that well. In a test that had the model transcribe six handwritten digits from a “slideshow” of 25 images, Flash got around 50% of the transcriptions right. The accuracy dropped to around 30% with eight digits.

“On real question-answering tasks over images, it appears to be particularly hard for all the models we tested,” Michael Saxon, a PhD student at UC Santa Barbara and one of the study’s co-authors, told TechCrunch. “That small amount of reasoning — recognizing that a number is in a frame and reading it — might be what is breaking the model.”

Google is overpromising with Gemini

Neither of the studies have been peer-reviewed, nor do they probe the releases of Gemini 1.5 Pro and 1.5 Flash with 2-million-token contexts. (Both tested the 1-million-token context releases.) And Flash isn’t meant to be as capable as Pro in terms of performance; Google advertises it as a low-cost alternative.

Nevertheless, both add fuel to the fire that Google’s been overpromising — and under-delivering — with Gemini from the beginning. None of the models the researchers tested, including OpenAI’s GPT-4o and Anthropic’s Claude 3.5 Sonnet, performed well. But Google’s the only model provider that’s given context window top billing in its advertisements.

“There’s nothing wrong with the simple claim, ‘Our model can take X number of tokens’ based on the objective technical details,” Saxon said. “But the question is, what useful thing can you do with it?”

Generative AI broadly speaking is coming under increased scrutiny as businesses (and investors) grow frustrated with the technology’s limitations.

In a pair of recent surveys from Boston Consulting Group, about half of the respondents — all C-suite executives — said that they don’t expect generative AI to bring about substantial productivity gains and that they’re worried about the potential for mistakes and data compromises arising from generative AI-powered tools. PitchBook recently reported that, for two consecutive quarters, generative AI dealmaking at the earliest stages has declined, plummeting 76% from its Q3 2023 peak.

Faced with meeting-summarizing chatbots that conjure up fictional details about people and AI search platforms that basically amount to plagiarism generators, customers are on the hunt for promising differentiators. Google — which has raced, at times clumsily, to catch up to its generative AI rivals — was desperate to make Gemini’s context one of those differentiators.

But the bet was premature, it seems.

“We haven’t settled on a way to really show that ‘reasoning’ or ‘understanding’ over long documents is taking place, and basically every group releasing these models is cobbling together their own ad hoc evals to make these claims,” Karpinska said. “Without the knowledge of how long context processing is implemented — and companies do not share these details — it is hard to say how realistic these claims are.”

Google didn’t respond to a request for comment.

Both Saxon and Karpinska believe the antidotes to hyped-up claims around generative AI are better benchmarks and, along the same vein, greater emphasis on third-party critique. Saxon notes that one of the more common tests for long context (liberally cited by Google in its marketing materials), “needle in the haystack,” only measures a model’s ability to retrieve particular info, like names and numbers, from datasets — not answer complex questions about that info.

“All scientists and most engineers using these models are essentially in agreement that our existing benchmark culture is broken,” Saxon said, “so it’s important that the public understands to take these giant reports containing numbers like ‘general intelligence across benchmarks’ with a massive grain of salt.”

Updated 7/3: A previous version of this article stated that Gemini 1.5 Pro and 1.5 Flash’s accuracy was below random chance on the task of reasoning over long text. In fact, their accuracy was above random chance. We’ve made the correction. Google PR also sent links to studies that suggest Gemini’s long-context performance is stronger than implied here: Extended Multi-Doc QA, Video MME, longer queries subset on LMSYS, Ruler.

More TechCrunch

TechCrunch Disrupt 2024 will be in San Francisco on October 28–30, and we’re already excited! Disrupt brings innovation for every stage of your startup journey, and we could not bring you this…

Connect with Google Cloud, Aerospace, Qualcomm and more at Disrupt 2024

Featured Article

A comprehensive list of 2024 tech layoffs

The tech layoff wave is still going strong in 2024. Following significant workforce reductions in 2022 and 2023, this year has already seen 60,000 job cuts across 254 companies, according to independent layoffs tracker Layoffs.fyi. Companies like Tesla, Amazon, Google, TikTok, Snap and Microsoft have conducted sizable layoffs in the…

A comprehensive list of 2024 tech layoffs

Intel announced it would layoff more than 15% of its staff, or 15,000 employees, in a memo to employees on Thursday. The massive headcount is part of a large plan…

Intel to lay off 15,000 employees

Following the recent lawsuit filed by the Recording Industry Association of America (RIAA) against music generation startups Udio and Suno, Suno admitted in a court filing on Thursday that it did, in…

AI music startup Suno claims training model on copyrighted music is ‘fair use’

In spite of a drop for the quarter, iPhone remained Apple’s most important category by a wide margin.

iPad sales help bail out Apple amid a continued iPhone slide

Molly Alter wears a lot of hats. She’s a mocumentary filmmaker working on a project about an alternate reality where charades is big business. She’s a caesar salad connoisseur and…

How filming a cappella concerts and dance recitals led Northzone’s newest partner Molly Alter to a career in VC

Microsoft has a long and tangled history with OpenAI, having invested a reported $13 billion in the ChatGPT maker as part of a long-term partnership. As part of the deal,…

Microsoft now lists OpenAI as a competitor in AI and search

The San Jose-based startup raised $60 million in a round that values it lower than the $500 million valuation it garnered in its most recent round, according to multiple sources.

Sequoia-backed Knowde raises Series C at a valuation cut

Self-driving technology company Aurora Innovation is looking to raise hundreds of millions in additional capital as it races toward a driverless commercial launch by the end of 2024.  Aurora is…

Self-driving truck startup Aurora Innovation to sell up to $420M in shares ahead of commercial launch

X (formerly Twitter) can no longer be accessed in the Mac App Store, suggesting that it has been officially delisted.  Searches for both “Twitter” and “X” on Apple’s platform no…

Twitter disappears from Mac App Store

Google Thursday said that it is introducing new Gemini-powered features for Chrome’s desktop version, including Lens for desktop, tab compare for shopping assistance, and natural language integration for search history.…

Google brings Gemini-powered search history and Lens to Chrome desktop

When Xiaoyin Qu was growing up in China, she was obsessed with learning how to build paper airplanes that could do flips in the air. Her parents, though, didn’t have…

Heeyo built an AI chatbot to be a billion kids’ interactive tutor and friend

While the company was awarded a massive, $4.2 billion contract to accelerate Starliner development in 2014, it was structured as a “fixed-price” model.

Boeing bleeds another $125M on Starliner program, bringing total losses to $1.6B

Welcome back to TechCrunch Mobility — your central hub for news and insights on the future of transportation. Sign up here for free — just click TechCrunch Mobility! Summer road…

Anthony Levandowski bets on off-road autonomy, Nuro plots a comeback and Applied Intuition gets more investor love

Google’s new features include Gemini in BigQuery and Looker to help users with data engineering and analysis.

Google Cloud expands its database portfolio with new AI capabilities

Rad Power Bikes, the Seattle-based e-bike startup that has raised more than $300 million from investors, went through another round of layoffs in July, TechCrunch has exclusively learned. This is…

VC darling Rad Power Bikes hit with another round of layoffs

Five years ago, as robotaxis and self-driving truck startups were still raking in millions in venture capital, Anthony Levandowski turned to off-road autonomy. Now, that decision — which brought the…

Why Anthony Levandowski returned to his off-road autonomous vehicle roots with AV startup Pronto

Commercial space station company Vast is building a private microgravity research lab as part of its wider Haven-1 station plans. The module is set to launch no earlier than the…

Vast plans microgravity lab on its Haven-1 private space station

Google Cloud is giving Y Combinator startups access to a dedicated, subsidized cluster of Nvidia graphics processing units and Google tensor processing units to build AI models. It’s part of…

Google Cloud now has a dedicated cluster of Nvidia GPUs for Y Combinator startups

Open source compliance and security platform FOSSA has acquired developer community platform StackShare, the company confirmed to TechCrunch.  StackShare is one of the more popular platforms for developers to discuss,…

Open source startup FOSSA is buying StackShare, a site used by 1.5M developers

Featured Article

Indian startups gut valuations ahead of IPO push

Ola Electric and FirstCry are set to test investor appetite with public listing, both pricing their shares below their previous valuation asks.

Indian startups gut valuations ahead of IPO push

The European Union’s risk-based regulation for applications of artificial intelligence has come into force starting from today.

The EU’s AI Act is now in force

The company also said it has received regulatory clearance to start Phase 2 clinical trials for a new drug in the U.S. later this year.

Healx, an AI-enabled drug discovery platform for rare diseases, raises $47M

The European Commission (EC) has given the go-ahead to HPE’s planned megabucks acquisition of Juniper Networks.

EU greenlights HPE’s $14B Juniper Networks acquisition

Meta, which develops one of the biggest foundational open source large language models, Llama, believes it will need significantly more computing power to train models in the future. Mark Zuckerberg…

Zuckerberg says Meta will need 10x more computing power to train Llama 4 than Llama 3

Axle Energy is a B2B, back-end infrastructure business focused on connecting flexible assets, such as electric vehicles and home batteries, to energy markets that aren’t otherwise available for consumers to…

Axle Energy’s sprint to decarbonize the grid lights up with $9M seed led by Accel

OpenAI CEO Sam Altman says that OpenAI is working with the U.S. AI Safety Institute, a federal government body that aims to assess and address risks in AI platforms, on…

OpenAI pledges to give U.S. AI Safety Institute early access to its next model

WhatsApp’s massive 500 million users in India have supercharged Meta’s AI ambitions. Meta CFO Susan Li said Wednesday that India is the largest market in terms of Meta AI usage,…

Meta says India is the largest market for Meta AI usage

While venture capitalists and the rest of the technorati are off on holiday or attending the Paris Olympics, the U.S. Securities and Exchange Commission and its staff attorneys are keeping…

Founder behind social media app IRL charged with fraud

The serious, long-term negative impact of the bankruptcy of banking-as-a-service (BaaS) fintech Synapse will be significant “on all of fintech, especially consumer-facing services,” one observer has said. In the wake…

Fintech Execs from Synctera, Unit, and Treasury Prime discuss the future of BaaS at TechCrunch Disrupt 2024